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ABSTRACT 

A revised model for predicting surface bubble loss (SBL) as a function of wind 
speed, surface grazing angle, and frequency is discussed. SBL is denned as the resid- 
ual loss (i.e., the loss in excess of that due to spreading and chemical absorption) in 
acoustic energy propagating near the sea surface that is attributable to attenuation 
by near-surface bubbles. This loss is a key input parameter for predicting bubble at- 
tenuation in simulations of weapon-system performance in near-surface environments. 
The original SBL model was introduced by the Applied Physics Laboratory, Univer- 
sity of Washington, in 1993. The revision consists of a new wind-speed threshold for 
breaking waves and the subsequent onset of bubble production, and an alternative 
formulation capable of handling more general ray geometries such as a ray vertexing 
near the surface. Model/data comparisons and examples of the model applied to a 
linear sound-speed profile are presented. 
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EXECUTIVE SUMMARY 

In the report APL-UW TR 9307, a model was introduced for the loss of acoustic 
energy propagating near the sea surface that is attributable to bubbles. This loss 
is referred to as the surface the bubble loss, or SBL. This report documents (1) a 
revision in the wind-speed threshold given in the original model for breaking waves 
and subsequent onset of bubble production, and (2) an alternative formulation of the 
SBL model capable of handling more general ray geometries such as a ray vertexing 
near the surface. The alternative formulation consists of a depth-dependent bubble 

attenuation coefficient. 

The revised model is 

SBL (dB)   =    L26 x 1°~V-57/0-85,    £/>6m/s (1) 
smt> 

=   SBL|U=6 e1-2^"6), t/<6m/s, 

where U is wind speed measured 10 m above the sea surface, / is acoustic frequency 
in kilohertz, and 6 is the nominal grazing angle of the surface bounce path (6 > 0°). 
In the revised model, the wind-speed threshold has been increased from 4 m/s to 
6 m/s and the form of the decay for wind speeds < 6 m/s has been changed to reduce 
the likelihood of predicting anomalously high SBL at very low wind speeds. 

The alternative formulation of the model is 

SBL (dB) = 2/    T-^rfz, (2) 
Jzv   sm[d{z)\ 

where a(z) is the depth-dependent bubble-attenuation coefficient, zv is the turning 
point depth of the ray, and 0(z) is the local grazing angle of the ray at depth z. 
The depth-dependent bubble-attenuation coefficient is integrated between a depth of 
10 m and zv to form an estimate of the two-way depth-integrated bubble attenuation, 
which is equivalent to SBL. An equation is given for a(z) as a function of wind speed 

and frequency. 

Starting with Eq. (2), the report derives useful analytic expressions for SBL based 
on a linear sound-speed profile. Unless the ray undergoes vertexing near the surface, 
Eq. (1) gives the same result as Eq. (2), and the user should consider this fact in 
deciding whether to employ the simpler version in Eq. (1) vs the depth-dependent 
version in Eq. (2). For ray vertexing, Eq. (1) is no longer valid, and the formulation 

given in Eq. (2) must be employed. 

vi     TR9411 
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1.    INTRODUCTION 

In the report APL-UW TR9307,1 APL-UW introduced a model for the residual 
loss (i.e., the loss in excess of spreading and chemical absorption) of acoustic energy- 
propagating near the sea surface that is attributable to bubbles. Since the bubbles 
are generated by breaking waves and reside within a few meters of the sea surface, 
this loss is referred to as the surface bubble loss, or SBL. This report documents 
(1) a revision in the wind-speed threshold given in the original model for breaking 
waves and the subsequent onset of the production of bubbles, and (2) an alternative 
formulation of the model capable of handling more general ray geometries such as 
a ray vertexing near the surface. The alternative formulation consists of a depth- 
dependent bubble-attenuation coefficient. 

Section 2 presents the revised wind-speed threshold and includes some model/data 
comparisons. Section 3 presents the alternative formulation of the model and includes 
examples of its use with a linear sound-speed profile. A summary and notes on model 

usage are presented in, Section 4. 

2.    MODEL REVISION 

The revised model is 

SBL (dB)   =   L26X^"V157/085,    U>6m/s (1) 
sm v 

=   SBL|U=6 e1-2^-6), U < 6 m/s , 

where U is the wind speed measured 10 m above the sea surface, / is the acoustic 
frequency in kilohertz, and 9 is the nominal grazing angle of the surface-bounce path 
(0 > 0°). The model includes a wind-speed threshold of 6 m/s for the production of 
breaking waves (also known as the Beaufort velocity) and the subsequent production 
of bubbles. The revised model shown in Eq. (1) differs from the original model only 
in the wind-speed threshold and in the functional form of the decay for wind speeds 
less than the threshold speed. The wind-speed threshold has been increased from 
4 m/s to 6 m/s to reduce the likelihood of predicting anomalously high SBL at very 

low wind speeds. 

TR9411       1 
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Figures 1-3 show representative model/data comparisons for data collected be- 

tween 20 and 40 kHz in the open ocean from the research platform FLIP1 and in 
coastal waters off Whidbey Island.2 Because the data were collected at different graz- 
ing angles, all data have been normalized to a 10° grazing angle using the formula 

SBL(1O°) = -^SBL(0), 
sm 10° 

where SBL(0) is the actual measured loss at surface grazing angle 0. The model (Eq. 
(1) with $ set to 10°) provides a reasonable representation of both the open-ocean 

and coastal data, with nearly all the data points falling within ±3 dB of the predicted 

curves. 

MODEL VS DATA, 20 kHz 
15 

10 

m 
X3 

m 

x = 

 1  

= Whidbey Island Experiment 

■■■■     i 

0 = FLIP Experiment 

- 

- . • 
• •• 

■ • 

X 

- 

o o  y 

 1 ET ' e— 

o §P 
. • 

10 15 
WIND SPEED (m/s) 

Fig. 1. Comparison of model predictions and measured 20-kHz data from the FLIP and 
Whidbey Island experiments. Data from various grazing angles have been normalized to 
a 10° grazing angle. Upper and lower dotted lines represent a ±3 dB interval about the 
predicted curve. 
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15 
MODEL VS DATA, 30 kHz 
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5 10 
WIND SPEED (m/s) 
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Fig. 2. Comparison of model predictions and measured 30-kHz data from the FLIP and 
Whidbey Island experiments. Data from various grazing angles have been normalized to 
a 10° grazing angle. Upper and lower dotted lines represent a ±3 dB interval about the 
predicted curve. 
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15 
MODEL VS DATA, 40 kHz 
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15 

Fig. 3. Comparison of model predictions and measured 40-kHz data from the FLIP and 
Whidbey Island experiments. Data from various grazing angles have been normalized to 
a 10° grazing angle. Upper and lower dotted lines represent a ±3 dB interval about the 
predicted curve. 
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3.    ALTERNATIVE FORMULATION OF THE SBL MODEL 

In this section, an alternative formulation of the SBL model is presented which 
is capable of handling more general ray geometries, including rays vertexing near the 

surface. 

3.1    Depth-Dependent Formulation 

The formulation in Eq. (1) represents the two-way depth-integrated bubble at- 
tenuation for a surface-reflecting ray under isovelocity conditions. It is simple to 
implement, and summarizes in a compact way the effects of wind speed, frequency, 
and surface grazing angle on SBL. Since isovelocity is assumed, however, the model 
cannot account for refraction effects, and in the case of ray vertexing {6 —> 0) it 
becomes invalid. 

By assuming an equivalent, depth-dependent bubble-attenuation coefficient that 
decays exponentially with depth, we can write Eq. (1) as 

SBL (dB) = 2/    -r-rJ^dz, (2) 
Jzv   sm[0(z)j 

where a(z) is the depth-dependent bubble-attenuation coefficient, 

a{z) = aQe-z'hB , (3) 

zv is the turning point depth of the ray, and 9(z) is the local grazing angle at depth 
z. The ray reaches a turning point by either reflection or refraction; in any case, zv 

may fall within the range 0 < zv < 10 m. We assume SBL is negligible for rays that 
undergo vertexing at depths greater than 10 m, or zv > 10 m. 

In Eq. (3) LB is the decay constant, or e-folding depth, for the exponential decay 

in bubble attenuation with depth and 

a0   =   0.63 x lO-3^1-57/0-85/^     17 > 6 m/s (4) 

=   ao|u=6 e1-2^"6), £/<6m/s. 

Several works2-6 incorporate an exponential decay model to describe bubble con- 
centration vs depth which can be directly related to a(z). A simple model describing 
LB VS wind speed for bubbles within the resonant size range most relevant to torpedo 
frequencies is LB = 0.07 x U. This equation, which describes measurements reported 
in Ref. 7, produces estimates of LB that fall approximately between estimates derived 

from similar models reported in Refs. 3 and 4. 

TR9411 
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The attenuation coefficient a(z) is integrated between a depth of 10 m and zv and 

multiplied by 2 to estimate the two-way depth-integrated bubble attenuation, which 

is equivalent to SBL. For example, if the ray reflects from the sea surface, zv equals 

0; if the ray vertexes, then zv is the vertex depth. For practical implementation, the 

maximum vertex depth is set to 10 m because bubble attenuation will be extremely 

weak beyond this depth. An expression similar to Eq. (2) is given in Ref. 8, which 

discusses a model for bubble loss at frequencies of 1-10 kHz. The user is cautioned 

that Eq. (2) has a singular point when 6{z) —» 0 which will cause numerical problems 

if not handled correctly. 

3.2    Examples Using a Linear Sound Speed Profile 

For an arbitrary sound-speed profile, Eq. (2) must be implemented numerically; 

however, instructive analytic results are possible using a linear sound-speed profile of 

the form 
c(z) = Co + gz , (5) 

where CQ is the sound speed at the surface, g is the sound-speed gradient in inverse 

seconds, and z is depth measured from the sea surface. For a linear sound-speed 

profile, all ray paths can be described by circular arcs with a radius of curvature Rc 

equal to (|#|cr)-1, where the ray launch parameter a is equal to cos[6(z)]/c(z), with 0 

being the local grazing angle at depth z (Fig. 4). Because a is an invariant property 

of the ray, it can be evaluated anywhere along the ray path. For example, if the ray 

is surface reflecting, a convenient point to evaluate a is at the surface such that a 

equals cos(0s)/co, where 6S is 6 evaluated at the surface. If the ray vertexes (6 -> 0) 

near the surface, then a equals l/c„, where cv is the sound speed at the vertex depth 

zv- 

The different cases of g > 0 and g < 0 are now analyzed. Note that g = 0 means 

the sound speed is isovelocity in the upper 10 m, the ray paths are straight lines, and 

there is no advantage in using Eq. (2) instead of Eq. (1). We begin with the case of 

downward refraction, or g < 0, and the instance of a surface-reflecting ray (Fig. 4A). 

Using the small-angle approximation for the sin of the angle (valid for 9 ~ 20°), we 

can write Eq. (2) as 

SBL = 2a0 /   -znrdz- (6) 
Jo      u{z) 

TR9411 
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SEA SURFACE 

B SEA SURFACE 
Zv 

T g<o 

SEA SURFACE 

Fig. 4. Ray geometries for a linear sound-speed profile where 6 is the local grazing angle, 
6S = 6 at the surface, and 6\Q = 9 at 10-m depth. Geometries in (A) and (B) show downward 
refraction (g < 0), with (A) showing a surface-reflecting ray and (B) showing a ray vertexing 
at depth zv. Geometry in (C) shows upward refraction (g > 0) and a surface-reflecting ray. 

Now, again using the small-angle approximation, we can relate the depth z to local 
grazing angle 9{z) by 

z = f [B{zf - 05
2] , (7) 

recalling that 0(z) will always be > 0S for g < 0. We recast Eq. (6) using 6 as the 
integration variable, giving 

SBL = 2a0Rce
ke2° 

Jes 

.-k0' de (8) 

where k — RC/(2LB)- The limits of integration are now from 6S to 01O, where 910 is 6 
evaluated at 10-m depth. Evaluating this integral gives 

SBL = 2a0JRce
fce^y|[$(^10) - $(Vfc0s)] , (9) 

TR9411       7 
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where $ is the tabulated probability integral, or error function,9 defined as 

$(x) = -= /   e-' dt 
-v/7r Jo 

Although the solution is exact, evaluation of the difference between error functions 
that both have large arguments is prone to numerical error. An asymptotic evaluation 

of this difference, which is more reliable, gives 

-kB2 

mVke10) - $(Vkds)}« ±j-, (io) 

and thus Eq. (9) reduces to simply 

SBL (dB) = ^^. (11) 

If we replace 6S with sin(0), where 6 is the ray's grazing angle at the sea surface, this 
is precisely the formulation for SBL given in Eq. (1). Thus the effect of downward 
refraction on a surface-reflecting ray is accounted for by simply using the surface 

grazing angle 9 = 6S in Eq. (1). 

Next we examine a ray vertexing within 10 m of the sea surface for the same case 

of g < 0 (Fig. 4B). In this instance, we have 

/•10  e~z/LB 

SBL (dB) = 2a0 /    ^T-^ dz . (12) 
Jzv       tJ{Z) 

Following the above procedure, we get 

SBL  = 2a0Rce-^LB T" e^dO. (13) 
./o 

The solution of the integral now gives 

SBL =2a0Rce-^
LB^$(Vk610). (14) 

The argument y/k8w will in many cases be > 2, making $ nearly unity.  Thus it is 

sufficient to write   
SBL (dB) = 2a0jRcLBir/2e-z«'LB (15) 

as the surface bubble loss for the vertexing ray. 

8      TR9411 
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For a vertexing ray, Eq. (2) does give a different solution than Eq. (1), as the 

latter is invalid when 6 —> 0. Figure 5 shows SBL vs wind speed for a ray that 

vertexed 2 m below the sea surface owing to a sound-speed gradient of g = —0.2 s-1. 

This value represents the maximum negative gradient within the upper 10 m of ocean, 

as measured during the FLIP experiment1 in late afternoon CTD casts. Note that 

Eq. (15) provides a useful guide for the effect of zv on SBL. The main influence is the 

factor e~z"lLB (Rc changes very little with zv). If, for example, zv changes from 2 to 

3 m, SBL is reduced by a factor of e1^3. 

Finally, the case of upward refraction, or g > 0, and a surface-reflecting ray 

(Fig. 4C) produces the same result as a surface-reflecting ray for g < 0 (Fig. 4A) 

although the intermediate steps are different. Ray vertexing within 10 m of the 

sea surface is not possible when g < 0. These results depend only on the grazing 

angle being sufficiently small that the small-angle approximation holds and not on 

the magnitude of g. For large angles, the additional path length incurred (compared 

with straight-line propagation) owing to refraction within 10 m of the sea surface is 

small, and therefore Eq. (1) remains a useful approximation. 

Fig. 5.    SBL vs wind speed (frequency 
below the sea surface, g = —0.2 s-1. 

WIND SPEED (m/s) 

30 kHz) for a ray undergoing vertexing 2 m 

TR9411 



.UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY. 

4.        SUMMARY AND ADDITIONAL NOTES ON MODEL USAGE 

Two changes were presented in the model for surface bubble loss (SBL) introduced 

in APL-UW TR9307: (1) a revision in the wind-speed threshold for the production of 

bubbles, and (2) an alternative formulation based on a depth-dependent attenuation 

coefficient due to bubbles, a(z). The change in the wind-speed threshold affects SBL 

predictions for wind speeds less than 6 m/s. The alternative formulation of the model 

is capable of handling total refraction, or vertexing, of a ray within 10 m of the sea 

surface, and also any refraction that surface-bounce paths may undergo. 

Useful analytic expressions for SBL based on the depth-dependent formulation of 

Eq. (2) were derived using a linear sound-speed profile. For surface reflection, it was 

shown that the model in Eq. (1) gave the same result as the formulation in Eq. (2). 

The user should consider this fact in deciding whether to employ the simpler version 

in Eq. (1) vs the depth-dependent version in Eq. (2). 

For ray vertexing (i.e., 6 -»■ 0), Eq. (1) is no longer valid, and simple expressions 

for SBL as a function of zv, the ray's vertexing depth, and Rc, the ray's radius of 

curvature, were derived on the basis of Eq. (4). Because of the exponential decay 

of bubble attenuation with depth, SBL is set equal to 0 dB for rays that undergo 

vertexing at depths greater than 10 m. 

Some remarks on model usage follow: 

1. The coefficients in the model are based on acoustic measurements made at 20- 

50 kHz. The model is therefore a high-frequency model; as a broad guideline, it 

is applicable at frequencies from 10-100 kHz. However, its results have recently 

been shown to be consistent with those of a model developed at the Naval 

Undersea Warfare Center for lower ship-sonar frequencies.10 

2. Scattering from bubbles will prevent SBL from becoming arbitrarily large. A 

nominal limit for SBL is 30 dB, based on scattering from the underside of a 

uniform layer of near-surface bubbles. However, such a limiting value for SBL 

has not been observed in data, because the patchiness of the bubble layer will 

nearly always allow some surface-scattered energy to pass. Thus we recommend 

an upper limit of SBLmax equal to 15 dB. This value is based on the SBL 

measurements reported in Refs. 1, 2, and 11. 

3. The effect of near-surface bubbles on the real part of the sound speed (known 

as the sound-speed anomaly) is ignored, since within the model's applicable 

10    TR9411 
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frequency range bubbles affect mainly the imaginary part of sound speed, or 
attenuation.12 

4. The model is based on measurements from a single surface bounce. To compute 
SBL for propagation channels with multiple surface (and bottom) interactions, 
the total SBL is considered to be the sum of the individual SBL values computed 
for each surface interaction. We caution that the model's accuracy for these 
conditions has not been evaluated. 

5. The model does not address geographical dependencies. We expect that, in gen- 
eral, littoral waters and more pristine oceanic waters will differ in terms of bub- 
ble properties. With few exceptions, however, bubble measurements reported in 
the literature show within-region variability that is greater than between-region 
variability (compare, for example, Refs. 2 and 7). This fact, together with the 
data shown in Figs. 1-3 for both coastal and oceanic environments, supports 
use of a single model at the present time. 

Additional remarks concerning basic assumptions employed in the model are con- 
tained in APL-UW TR9307.1 

TR9411     11 
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